首页> 外文OA文献 >Robust Mobile Object Tracking Based on Multiple Feature Similarity and Trajectory Filtering
【2h】

Robust Mobile Object Tracking Based on Multiple Feature Similarity and Trajectory Filtering

机译:基于多特征相似度和鲁棒性的鲁棒移动目标跟踪   轨迹过滤

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new algorithm to track mobile objects in differentscene conditions. The main idea of the proposed tracker includes estimation,multi-features similarity measures and trajectory filtering. A feature set(distance, area, shape ratio, color histogram) is defined for each trackedobject to search for the best matching object. Its best matching object and itsstate estimated by the Kalman filter are combined to update position and sizeof the tracked object. However, the mobile object trajectories are usuallyfragmented because of occlusions and misdetections. Therefore, we also proposea trajectory filtering, named global tracker, aims at removing the noisytrajectories and fusing the fragmented trajectories belonging to a same mobileobject. The method has been tested with five videos of different sceneconditions. Three of them are provided by the ETISEO benchmarking project(http://www-sop.inria.fr/orion/ETISEO) in which the proposed trackerperformance has been compared with other seven tracking algorithms. Theadvantages of our approach over the existing state of the art ones are: (i) noprior knowledge information is required (e.g. no calibration and no contextualmodels are needed), (ii) the tracker is more reliable by combining multiplefeature similarities, (iii) the tracker can perform in different sceneconditions: single/several mobile objects, weak/strong illumination,indoor/outdoor scenes, (iv) a trajectory filtering is defined and applied toimprove the tracker performance, (v) the tracker performance outperforms manyalgorithms of the state of the art.
机译:本文提出了一种在不同场景条件下跟踪移动物体的新算法。提出的跟踪器的主要思想包括估计,多特征相似性度量和轨迹滤波。为每个被跟踪对象定义一个特征集(距离,面积,形状比,颜色直方图),以搜索最匹配的对象。通过卡尔曼滤波器估计其最匹配的对象及其状态,以更新被跟踪对象的位置和大小。然而,由于遮挡和误检测,移动物体的轨迹通常是碎片状的。因此,我们还提出了一种称为全局跟踪器的轨迹过滤,其目的是去除噪声轨迹并融合属于同一移动对象的碎片轨迹。该方法已通过五个具有不同场景条件的视频进行了测试。 ETISEO基准测试项目(http://www-sop.inria.fr/orion/ETISEO)提供了其中的三个,其中将拟议的跟踪器性能与其他七个跟踪算法进行了比较。我们的方法相对于现有技术的优点是:(i)不需要任何先验知识信息(例如,无需校准和上下文模型),(ii)通过结合多种功能相似性,跟踪器更加可靠,(iii)跟踪器可以在不同的场景条件下执行:单个/多个移动物体,弱/强照明,室内/室外场景,(iv)定义了轨迹过滤并用于改善跟踪器性能,(v)跟踪器性能优于状态的许多算法艺术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号